Biofilms are multicellular heterogeneous bacterial communities characterized by social-like division of labor, and remarkable robustness with respect to external stresses. Increasingly often an analogy between biofilms and arguably more complex eukaryotic tissues is being drawn. One illustrative example of where this analogy can be practically useful is the process of wound healing. While it has been extensively studied in eukaryotic tissues, the mechanism of wound healing in biofilms is virtually unexplored. Combining experiments in Bacillus subtilis bacteria, a model organism for biofilm formation, and a lattice-based theoretical model of biofilm growth, we studied how biofilms recover after macroscopic damage. We suggest that nutrient gradients and the abundance of proliferating cells are key factors augmenting wound closure. Accordingly, in the model, cell quiescence, nutrient fluxes, and biomass represented by cells and self-secreted extracellular matrix are necessary to qualitatively recapitulate the experimental results for damage repair. One of the surprising experimental findings is that residual cells, persisting in a damaged area after removal of a part of the biofilm, prominently affect the healing process. Taken together, our results outline the important roles of nutrient gradients and residual cells on biomass regrowth on macroscopic scales of the whole biofilm. The proposed combined experiment–simulation framework opens the way to further investigate the possible relation between wound healing, cell signaling and cell phenotype alternation in the local microenvironment of the wound.
Spectral splitting of a stimulated Raman transition in a single molecule
Johannes Zirkelbach, Burak Gürlek, Masoud Mirzaei, Alexey Shkarin, Tobias Utikal, Stephan Götzinger, Vahid Sandoghdar
Physical Review Research
5
043244
(2023)
|
Journal
|
PDF
The small cross-section of Raman scattering poses a great challenge for its direct study at the single-molecule level. By exploiting the high Franck-Condon factor of a common-mode resonance, choosing a large vibrational frequency difference in electronic ground and excited states and operating at T<2K, we succeed at driving a coherent stimulated Raman transition in individual molecules. We observe and model a spectral splitting that serves as a characteristic signature of the phenomenon at hand. Our study sets the ground for exploiting the intrinsic optomechanical degrees of freedom of molecules for applications in solid-state quantum optics and information processing.
On-chip interference of scattering from two individual molecules
Dominik Rattenbacher, Alexey Shkarin, Jan Renger, Tobias Utikal, Stephan Götzinger, Vahid Sandoghdar
Integrated photonic circuits offer a promising route for studying coherent cooperative effects of a controlled collection of quantum emitters. However, spectral inhomogeneities, decoherence, and material incompatibilities in the solid state make this a nontrivial task. Here, we demonstrate efficient coupling of a pair of Fourier-limited organic molecules embedded in a polyethylene film to a TiO2 microdisc resonator on a glass chip. Moreover, we tune the resonance frequencies of the emitters with respect to that of the microresonator by employing nanofabricated electrodes. For two molecules separated by a distance of about 8 µm and an optical phase difference of about pi/2, we report on a large collective extinction of the incident light in the forward direction and the destructive interference of its scattering in the backward direction. Our work sets the ground for coherent coupling of several quantum emitters via a common mode and realization of polymer-based hybrid quantum photonic circuits.
Insights into protein structure using cryogenic light microscopy
Hisham Mazal, Franz Wieser, Vahid Sandoghdar
Biochemical Society Transactions
(2023)
|
Journal
|
PDF
Fluorescence microscopy has witnessed many clever innovations in the last two decades, leading to new methods such as structured illumination and super-resolution microscopies. The attainable resolution in biological samples is, however, ultimately limited by residual motion within the sample or in the microscope setup. Thus, such experiments are typically performed on chemically fixed samples. Cryogenic light microscopy (Cryo-LM) has been investigated as an alternative, drawing on various preservation techniques developed for cryogenic electron microscopy (Cryo-EM). Moreover, this approach offers a powerful platform for correlative microscopy. Another key advantage of Cryo-LM is the strong reduction in photobleaching at low temperatures, facilitating the collection of orders of magnitude more photons from a single fluorophore. This results in much higher localization precision, leading to Angstrom resolution. In this review, we discuss the general development and progress of Cryo-LM with an emphasis on its application in harnessing structural information on proteins and protein complexes.
Mechanics in the nervous system: From development to disease
Physical forces are ubiquitous in biological processes across scales and diverse contexts. This review highlights the significance of mechanical forces in nervous system development, homeostasis, and disease. We provide an overview of mechanical signals present in the nervous system and delve into mechanotransduction mechanisms translating these mechanical cues into biochemical signals. During development, mechanical cues regulate a plethora of processes, including cell proliferation, differentiation, migration, network formation, and cortex folding. Forces then continue exerting their influence on physiological processes, such as neuronal activity, glial cell function, and the interplay between these different cell types. Notably, changes in tissue mechanics manifest in neurodegenerative diseases and brain tumors, potentially offering new diagnostic and therapeutic target opportunities. Understanding the role of cellular forces and tissue mechanics in nervous system physiology and pathology adds a new facet to neurobiology, shedding new light on many processes that remain incompletely understood.
Regenerative capacity of neural tissue scales with changes in tissue mechanics post injury
Alejandro Carnicer-Lombarte, Damiano G. Barone, Filip Wronowski, George G. Malliaras, James W. Fawcett, Kristian Franze
Spinal cord injuries have devastating consequences for humans, as mammalian neurons of the central nervous system (CNS) cannot regenerate. In the peripheral nervous system (PNS), however, neurons may regenerate to restore lost function following injury. While mammalian CNS tissue softens after injury, how PNS tissue mechanics changes in response to mechanical trauma is currently poorly understood. Here we characterised mechanical rat nerve tissue properties before and after in vivo crush and transection injuries using atomic force microscopy-based indentation measurements. Unlike CNS tissue, PNS tissue significantly stiffened after both types of tissue damage. This nerve tissue stiffening strongly correlated with an increase in collagen I levels. Schwann cells, which crucially support PNS regeneration, became more motile and proliferative on stiffer substrates in vitro, suggesting that changes in tissue stiffness may play a key role in facilitating or impeding nervous system regeneration.
Bile Is a Selective Elevator for Mucosal Mechanics and Transport
Simon Hanio, Stephanie Möllmert, Conrad Möckel, Susobhan Choudhury, Andreas I. Höpfel, Theresa Zorn, Sebastian Endres, Jonas Schlauersbach, Lena Scheller, et al.
Mucus mechanically protects the intestinal epithelium and impacts the absorption of drugs, with a largely unknown role for bile. We explored the impacts of bile on mucosal biomechanics and drug transport within mucus. Bile diffused with square-root-of-time kinetics and interplayed with mucus, leading to transient stiffening captured in Brillouin images and a concentration-dependent change from subdiffusive to Brownian-like diffusion kinetics within the mucus demonstrated by differential dynamic microscopy. Bile-interacting drugs, Fluphenazine and Perphenazine, diffused faster through mucus in the presence of bile, while Metoprolol, a drug with no bile interaction, displayed consistent diffusion. Our findings were corroborated by rat studies, where co-dosing of a bile acid sequestrant substantially reduced the bioavailability of Perphenazine but not Metoprolol. We clustered over 50 drugs based on their interactions with bile and mucin. Drugs that interacted with bile also interacted with mucin but not vice versa. This study detailed the dynamics of mucus biomechanics under bile exposure and linked the ability of a drug to interact with bile to its abbility to interact with mucus.
Small leucine-rich proteoglycans inhibit CNS regeneration by modifying the structural and mechanical properties of the lesion environment
Julia Kolb, Vasiliki Tsata, Nora John, Kyoohyun Kim, Conrad Möckel, Gonzalo Rosso, Veronika Kurbel, Asha Parmar, Gargi Sharma, et al.
Nature Communications
14
6814
(2023)
|
Journal
|
PDF
Extracellular matrix (ECM) deposition after central nervous system (CNS) injury leads to inhibitory scarring in humans and other mammals, whereas it facilitates axon regeneration in the zebrafish. However, the molecular basis of these different fates is not understood. Here, we identify small leucine-rich proteoglycans (SLRPs) as a contributing factor to regeneration failure in mammals. We demonstrate that the SLRPs chondroadherin, fibromodulin, lumican, and prolargin are enriched in rodent and human but not zebrafish CNS lesions. Targeting SLRPs to the zebrafish injury ECM inhibits axon regeneration and functional recovery. Mechanistically, we find that SLRPs confer mechano-structural properties to the lesion environment that are adverse to axon growth. Our study reveals SLRPs as inhibitory ECM factors that impair axon regeneration by modifying tissue mechanics and structure, and identifies their enrichment as a feature of human brain and spinal cord lesions. These findings imply that SLRPs may be targets for therapeutic strategies to promote CNS regeneration.
Varying the Stiffness and Diffusivity of Rod-Shaped Microgels Independently through Their Molecular Building Blocks
Yonca Kittel, Luis P. B. Guerzoni, Carolina Itzin, Dirk Rommel, Matthias Mork, Céline Bastard, Bernhard Häßel, Abdolrahman Omidinia-Anarkoli, Silvia P. Centeno, et al.
Angewandte Chemie, International Edition in English
62
e202309779
(2023)
|
Journal
|
PDF
Microgels are water-swollen, crosslinked polymers that are widely used as colloidal building blocks in scaffold materials for tissue engineering and regenerative medicine. Microgels can be controlled in their stiffness, degree of swelling, and mesh size depending on their polymer architecture, crosslink density, and fabrication method – all of which influence their function and interaction with the environment. Currently, there is a lack of understanding of how the polymer composition influences the internal structure of soft microgels and how this morphology affects specific biomedical applications. In this report, we systematically vary the architecture and molar mass of polyethylene glycol-acrylate (PEG-Ac) precursors, as well as their concentration and combination, to gain insight in the different parameters that affect the internal structure of rod-shaped microgels. We characterize the mechanical properties and diffusivity, as well as the conversion of acrylate groups during photopolymerization, in both bulk hydrogels and microgels produced from the PEG-Ac precursors. Furthermore, we investigate cell-microgel interaction, and we observe improved cell spreading on microgels with more accessible RGD peptide and with a stiffness in a range of 20 kPa to 50 kPa lead to better cell growth.
Conserved nucleocytoplasmic density homeostasis drives cellular organization across eukaryotes
Abin Biswas, Omar Muñoz, Kyoohyun Kim, Carsten Hoege, Benjamin M. Lorton, David Shechter, Jochen Guck, Vasily Zaburdaev, Simone Reber
The packing and confinement of macromolecules in the cytoplasm and nucleoplasm has profound implications for cellular biochemistry. How intracellular density distributions vary and affect cellular physiology remains largely unknown. Here, we show that the nucleus is less dense than the cytoplasm and that living systems establish and maintain a constant density ratio between these compartments. Using label-free biophotonics and theory, we show that nuclear density is set by a pressure balance across the nuclear envelope in vitro, in vivo and during early development. Nuclear transport establishes a specific nuclear proteome that exerts a colloid osmotic pressure, which, assisted by entropic chromatin pressure, draws water into the nucleus. Using C. elegans, we show that while nuclear-to-cytoplasmic (N/C) volume ratios change during early development, the N/C density ratio is robustly maintained. We propose that the maintenance of a constant N/C density ratio is the biophysical driver of one of the oldest tenets of cell biology: the N/C volume ratio. In summary, this study reveals a previously unidentified homeostatic coupling of macromolecular densities that drives cellular organization with implications for pathophysiologies such as senescence and cancer.
Periodic ethanol supply as a path toward unlimited lifespan of Caenorhabditis elegans dauer larvae
Xingyu Zhang, Sider Penkov, Teymuras V. Kurzchalia, Vasily Zaburdaev
The dauer larva is a specialized stage of worm development optimized for survival under harsh conditions that have been used as a model for stress resistance, metabolic adaptations, and longevity. Recent findings suggest that the dauer larva of Caenorhabditis elegans may utilize external ethanol as an energy source to extend their lifespan. It was shown that while ethanol may serve as an effectively infinite source of energy, some toxic compounds accumulating as byproducts of its metabolism may lead to the damage of mitochondria and thus limit the lifespan of larvae. A minimal mathematical model was proposed to explain the connection between the lifespan of a dauer larva and its ethanol metabolism. To explore theoretically if it is possible to extend even further the lifespan of dauer larvae, we incorporated two natural mechanisms describing the recovery of damaged mitochondria and elimination of toxic compounds, which were previously omitted in the model. Numerical simulations of the revised model suggested that while the ethanol concentration is constant, the lifespan still stays limited. However, if ethanol is supplied periodically, with a suitable frequency and amplitude, the dauer could survive as long as we observe the system. Analytical methods further help to explain how feeding frequency and amplitude affect lifespan extension. Based on the comparison of the model with experimental data for fixed ethanol concentration, we proposed the range of feeding protocols that could lead to even longer dauer survival and it can be tested experimentally.
Label-free composition determination for biomolecular condensates with an arbitrarily large number of components
Patrick McCall, Kyoohyun Kim, Martine Ruer-Gruß, Jan Peychl, Jochen Guck, Anthony A. Hyman, Jan Brugués
Biomolecular condensates are membrane-less organelles made of multiple components, often including several distinct proteins and nucleic acids. However, current tools to measure condensate composition are limited and cannot capture this complexity quantitatively, as they either require fluorescent labels, which we show can perturb composition, or can distinguish only 1-2 components. Here, we describe a label-free method based on quantitative phase microscopy to measure the composition of condensates with an arbitrarily large number of components. We first validate the method empirically in binary mixtures, revealing sequence-encoded density variation and complex aging dynamics for condensates composed of full-length proteins. In simplified multi-component protein/RNA condensates, we uncover a regime of constant condensate density and a large range of protein:RNA stoichiometry when varying average composition. The unexpected decoupling of density and composition highlights the need to determine molecular stoichiometry in multi-component condensates. We foresee this approach enabling the study of compositional regulation of condensate properties and function.
Human T cells loaded with superparamagnetic iron oxide nanoparticles retain antigen-specific TCR functionality
Felix Pfister, Jan Dörrie, Niels Schaft, Vera Buchele, Harald Unterweger, Lucas R. Carnell, Patrick Schreier, Rene Stein, Markéta Kubánková, et al.
Frontiers in Immunology
14
1223695
(2023)
|
Journal
|
PDF
BACKGROUND: Immunotherapy of cancer is an emerging field with the potential to improve long-term survival. Thus far, adoptive transfer of tumor-specific T cells represents an effective treatment option for tumors of the hematological system such as lymphoma, leukemia or myeloma. However, in solid tumors, treatment efficacy is low owing to the immunosuppressive microenvironment, on-target/off-tumor toxicity, limited extravasation out of the blood vessel, or ineffective trafficking of T cells into the tumor region. Superparamagnetic iron oxide nanoparticles (SPIONs) can make cells magnetically controllable for the site-specific enrichment. METHODS: In this study, we investigated the influence of SPION-loading on primary human T cells for the magnetically targeted adoptive T cell therapy. For this, we analyzed cellular mechanics and the T cell response after stimulation via an exogenous T cell receptor (TCR) specific for the melanoma antigen MelanA or the endogenous TCR specific for the cytomegalovirus antigen pp65 and compared them to T cells that had not received SPIONs. RESULTS: SPION-loading of human T cells showed no influence on cellular mechanics, therefore retaining their ability to deform to external pressure. Additionally, SPION-loading did not impair the T cell proliferation, expression of activation markers, cytokine secretion, and tumor cell killing after antigen-specific activation mediated by the TCR. CONCLUSION: In summary, we demonstrated that SPION-loading of T cells did not affect cellular mechanics or the functionality of the endogenous or an exogenous TCR, which allows future approaches using SPIONs for the magnetically enrichment of T cells in solid tumors.
Amphiphiles Formed from Synthetic DNA-Nanomotifs Mimic the Stepwise Dispersal of Transcriptional Clusters in the Cell Nucleus
Xenia Tschurikow, Aaron Gadzekpo, Mai P. Tran, Rakesh Chatterjee, Marcel Sobucki, Vasily Zaburdaev, Kerstin Göpfrich, Lennart Hilbert
Stem cells exhibit prominent clusters controlling the transcription of genes into RNA. These clusters form by a phase-separation mechanism, and their size and shape are controlled via an amphiphilic effect of transcribed genes. Here, we construct amphiphile-nanomotifs purely from DNA, and we achieve similar size and shape control for phase-separated droplets formed from fully synthetic, self-interacting DNA-nanomotifs. Increasing amphiphile concentrations induce rounding of droplets, prevent droplet fusion, and, at high concentrations, cause full dispersal of droplets. Super-resolution microscopy data obtained from zebrafish embryo stem cells reveal a comparable transition for transcriptional clusters with increasing transcription levels. Brownian dynamics and lattice simulations further confirm that the addition of amphiphilic particles is sufficient to explain the observed changes in shape and size. Our work reproduces key aspects of transcriptional cluster formation in biological cells using relatively simple DNA sequence-programmable nanostructures, opening novel ways to control the mesoscopic organization of synthetic nanomaterials.
Highly Nonlinear Dynamics of In Vivo Deep-Tissue Interaction with
Femtosecond Laser Pulses at 1030 nm
Soyeon Jun, Andreas Herbst, Kilian Scheffter, Nora John, Julia Kolb, Daniel Wehner, Hanieh Fattahi
We report on the highly nonlinear behavior observed in the central nervous system tissue of zebrafish (Danio rerio) when exposed to femtosecond pulses at 1030 nm. At this irradiation wavelength, photo damage becomes detectable only after exceeding a specific peak intensity threshold, which is independent of the photon flux and irradiation time, distinguishing it from irradiation at shorter wavelengths. Furthermore, we investigate and quantify the role of excessive heat in reducing the damage threshold, particularly during high-repetition-rate operations, which are desirable for label-free and multi-dimensional microscopy techniques. To verify our findings, we examined cellular responses to tissue damage, including apoptosis and the recruitment of macrophages and fibroblasts at different time points post-irradiation. These findings substantially contribute to advancing the emerging nonlinear optical microscopy techniques and provide a strategy for inducing deep-tissue, precise and localized injuries using near-infrared femtosecond laser pulses.
Brain tissue mechanics is governed by microscale relations of the tissue constituents
P. Sáez, C. Borau, N. Antonovaite, Kristian Franze
Local mechanical tissue properties are a critical regulator of cell function in the central nervous system (CNS) during development and disorder. However, we still don't fully understand how the mechanical properties of individual tissue constituents, such as cell nuclei or myelin, determine tissue mechanics. Here we developed a model predicting local tissue mechanics, which induces non-affine deformations of the tissue components. Using the mouse hippocampus and cerebellum as model systems, we show that considering individual tissue components alone, as identified by immunohistochemistry, is not sufficient to reproduce the local mechanical properties of CNS tissue. Our results suggest that brain tissue shows a universal response to applied forces that depends not only on the amount and stiffness of the individual tissue constituents but also on the way how they assemble. Our model may unify current incongruences between the mechanics of soft biological tissues and the underlying constituents and facilitate the design of better biomedical materials and engineered tissues. To this end, we provide a freely-available platform to predict local tissue elasticity upon providing immunohistochemistry images and stiffness values for the constituents of the tissue.
IL-3 receptor signalling suppresses chronic intestinal inflammation by controlling mechanobiology and tissue egress of regulatory T cells
Karen Anne-Marie Ullrich, Julia Derdau, Carsten Baltes, Alice Battistella, Gonzalo Rosso, Stefan Uderhardt, Lisa Lou Schulze, Li-Juan Liu, Mark Dedden, et al.
IL-3 has been reported to be involved in various inflammatory disorders, but its role in inflammatory bowel disease (IBD) has not been addressed so far. Here, we determined IL-3 expression in samples from patients with IBD and studied the impact of Il3 or Il3r deficiency on T cell-dependent experimental colitis. We explored the mechanical, cytoskeletal and migratory properties of Il3r −/− and Il3r +/+ T cells using real-time deformability cytometry, atomic force microscopy, scanning electron microscopy, fluorescence recovery after photobleaching and in vitro and in vivo cell trafficking assays. We observed that, in patients with IBD, the levels of IL-3 in the inflamed mucosa were increased. In vivo, experimental chronic colitis on T cell transfer was exacerbated in the absence of Il-3 or Il-3r signalling. This was attributable to Il-3r signalling-induced changes in kinase phosphorylation and actin cytoskeleton structure, resulting in increased mechanical deformability and enhanced egress of Tregs from the inflamed colon mucosa. Similarly, IL-3 controlled mechanobiology in human Tregs and was associated with increased mucosal Treg abundance in patients with IBD. Collectively, our data reveal that IL-3 signaling exerts an important regulatory role at the interface of biophysical and migratory T cell features in intestinal inflammation and suggest that this might be an interesting target for future intervention.
Label-free discrimination of extracellular vesicles from large lipoproteins
Anna D. Kashkanova, Martin Blessing, Marie Reischke, Jan-Ole Baur, Andreas S. Baur, Vahid Sandoghdar, Jan Van Deun
Journal of extracellular vesicles
12
12348
(2023)
|
Journal
|
PDF
Extracellular vesicles (EVs) are increasingly gaining interest as biomarkers and therapeutics. Accurate sizing and quantification of EVs remain problematic, given their nanometre size range and small scattering cross-sections. This is compounded by the fact that common EV isolation methods result in co-isolation of particles with comparable features. Especially in blood plasma, similarly-sized lipoproteins outnumber EVs to a great extent. Recently, interferometric nanoparticle tracking analysis (iNTA) was introduced as a particle analysis method that enables determining the size and refractive index of nanoparticles with high sensitivity and precision. In this work, we apply iNTA to differentiate between EVs and lipoproteins, and compare its performance to conventional nanoparticle tracking analysis (NTA). We show that iNTA can accurately quantify EVs in artificial EV-lipoprotein mixtures and in plasma-derived EV samples of varying complexity. Conventional NTA could not report on EV numbers, as it was not able to distinguish EVs from lipoproteins. iNTA has the potential to become a new standard for label-free EV characterization in suspension.
Revolutionizing microfluidics with artificial intelligence: a new dawn for lab-on-a-chip technologies
Cell mechanical properties determine many physiological functions, such as cell fate specification, migration, or circulation through vasculature. Identifying factors that govern the mechanical properties is therefore a subject of great interest. Here we present a mechanomics approach for establishing links between single-cell mechanical phenotype changes and the genes involved in driving them. We combine mechanical characterization of cells across a variety of mouse and human systems with machine learning-based discriminative network analysis of associated transcriptomic profiles to infer a conserved network module of five genes with putative roles in cell mechanics regulation. We validate in silico that the identified gene markers are universal, trustworthy and specific to the mechanical phenotype, and demonstrate experimentally that a selected target, CAV1, changes the mechanical phenotype of cells accordingly when silenced or overexpressed. Our data-driven approach paves the way towards engineering cell mechanical properties on demand to explore their impact on physiological and pathological cell functions.
Plakoglobin is a mechanoresponsive regulator of naive pluripotency
Timo N. Kohler, Joachim De Jonghe, Anna L. Ellermann, Ayaka Yanagida, Michael Herger, Erin M. Slatery, Antonia Weberling, Clara Munger, Katrin Fischer, et al.
Nature Communications
14(1)
(2023)
|
Journal
|
PDF
Biomechanical cues are instrumental in guiding embryonic development and cell differentiation. Understanding how these physical stimuli translate into transcriptional programs will provide insight into mechanisms underlying mammalian pre-implantation development. Here, we explore this type of regulation by exerting microenvironmental control over mouse embryonic stem cells. Microfluidic encapsulation of mouse embryonic stem cells in agarose microgels stabilizes the naive pluripotency network and specifically induces expression of Plakoglobin (Jup), a vertebrate homolog of β-catenin. Overexpression of Plakoglobin is sufficient to fully re-establish the naive pluripotency gene regulatory network under metastable pluripotency conditions, as confirmed by single-cell transcriptome profiling. Finally, we find that, in the epiblast, Plakoglobin was exclusively expressed at the blastocyst stage in human and mouse embryos - further strengthening the link between Plakoglobin and naive pluripotency in vivo. Our work reveals Plakoglobin as a mechanosensitive regulator of naive pluripotency and provides a paradigm to interrogate the effects of volumetric confinement on cell-fate transitions.
Constriction imposed by basement membrane regulates developmental cell migration
Ester Molina López, Anna Kabanova, Alexander Winkel, Kristian Franze, Isabel M. Palacios, María D. Martín-Bermudo
The basement membrane (BM) is a specialized extracellular matrix (ECM), which underlies or encases developing tissues. Mechanical properties of encasing BMs have been shown to profoundly influence the shaping of associated tissues. Here, we use the migration of the border cells (BCs) of the Drosophila egg chamber to unravel a new role of encasing BMs in cell migration. BCs move between a group of cells, the nurse cells (NCs), that are enclosed by a monolayer of follicle cells (FCs), which is, in turn, surrounded by a BM, the follicle BM. We show that increasing or reducing the stiffness of the follicle BM, by altering laminins or type IV collagen levels, conversely affects BC migration speed and alters migration mode and dynamics. Follicle BM stiffness also controls pairwise NC and FC cortical tension. We propose that constraints imposed by the follicle BM influence NC and FC cortical tension, which, in turn, regulate BC migration. Encasing BMs emerge as key players in the regulation of collective cell migration during morphogenesis.
Alcohol-sourced acetate impairs T cell function by promoting cortactin acetylation
Vugar Azizov, Michael Hübner, Michael Frech, Jörg Hofmann, Markéta Kubánková, Dennis Lapuente, Matthias Tenbusch, Jochen Guck, Georg Schett, et al.
Alcohol is among the most widely consumed dietary substances. Excessive alcohol consumption damages the liver, heart, and brain. Alcohol also has strong immunoregulatory properties. Here, we report how alcohol impairs T cell function via acetylation of cortactin, a protein that binds filamentous actin and facilitates branching. Upon alcohol consumption, acetate, the metabolite of alcohol, accumulates in lymphoid organs. T cells exposed to acetate, exhibit increased acetylation of cortactin. Acetylation of cortactin inhibits filamentous actin binding and hence reduces T cell migration, immune synapse formation and activation. While mutated, acetylation-resistant cortactin rescues the acetate-induced inhibition of T cell migration, primary mouse cortactin knockout T cells exhibited impaired migration. Acetate-induced cytoskeletal changes effectively inhibited activation, proliferation, and immune synapse formation in T cells in vitro and in vivo in an influenza infection model in mice. Together these findings reveal cortactin as a possible target for mitigation of T cell driven autoimmune diseases.
Organic Molecules as Origin of Visible-Range Single Photon Emission from Hexagonal Boron Nitride and Mica
Michael Neumann, Xu Wei, Luis Morales-Inostroza, Seunghyun Song, Sung-Gyu Lee, Kenji Watanabe, Takashi Taniguchi, Stephan Götzinger, Young Hee Lee
The discovery of room-temperature single-photon emitters (SPEs) hosted by two-dimensional hexagonal boron nitride (2D hBN) has sparked intense research interest. Although emitters in the vicinity of 2 eV have been studied extensively, their microscopic identity has remained elusive. The discussion of this class of SPEs has centered on point defects in the hBN crystal lattice, but none of the candidate defect structures have been able to capture the great heterogeneity in emitter properties that is observed experimentally. Employing a widely used sample preparation protocol but disentangling several confounding factors, we demonstrate conclusively that heterogeneous single-photon emission at ∼2 eV associated with hBN originates from organic molecules, presumably aromatic fluorophores. The appearance of those SPEs depends critically on the presence of organic processing residues during sample preparation, and emitters formed during heat treatment are not located within the hBN crystal as previously thought, but at the hBN/substrate interface. We further demonstrate that the same class of SPEs can be observed in a different 2D insulator, fluorophlogopite mica.
Quantum Efficiency of Single Dibenzoterrylene Molecules in p-Dichlorobenzene at Cryogenic Temperatures
Mohammad Musavinezhad, Alexey Shkarin, Dominik Rattenbacher, Jan Renger, Tobias Utikal, Stephan Götzinger, Vahid Sandoghdar
The Journal of Physical Chemistry B
5353-5359
(2023)
|
Journal
|
PDF
We measure the quantum efficiency (QE) of individual dibenzoterrylene (DBT) molecules embedded in p-dichlorobenzene at cryogenic temperatures. To achieve this, we combine two distinct methods based on the maximal photon emission and on the power required to saturate the zero-phonon line to compensate for uncertainties in some key system parameters. We find that the outcomes of the two approaches are in good agreement for reasonable values of the parameters involved, reporting a large fraction of molecules with QE values above 50%, with some exceeding 70%. Furthermore, we observe no correlation between the observed lower bound on the QE and the lifetime of the molecule, suggesting that most of the molecules have a QE exceeding the established lower bound. This confirms the suitability of DBT for quantum optics experiments. In light of previous reports of low QE values at ambient conditions, our results hint at the possibility of a strong temperature dependence of the QE.
Identification of a Distinct Monocyte-Driven Signature in Systemic Sclerosis Using Biophysical Phenotyping of Circulating Immune Cells
Alexandru-Emil Matei, Markéta Kubánková, Liyan Xu, Andrea-Hermina Györfi, Evgenia Boxberger, Despina Soteriou, Maria Papava, Julia Prater, Xuezhi Hong, et al.
Arthritis & Rheumatology
75(5)
768-781
(2023)
|
Journal
|
PDF
OBJECTIVE: Pathologically activated circulating immune cells, including monocytes, play major roles in systemic sclerosis (SSc). Their functional characterization can provide crucial information with direct clinical relevance. However, tools for the evaluation of pathologic immune cell activation and, in general, of clinical outcomes in SSc are scarce. Biophysical phenotyping (including characterization of cell mechanics and morphology) provides access to a novel, mostly unexplored layer of information regarding pathophysiologic immune cell activation. We hypothesized that the biophysical phenotyping of circulating immune cells, reflecting their pathologic activation, can be used as a clinical tool for the evaluation and risk stratification of patients with SSc. METHODS: We performed biophysical phenotyping of circulating immune cells by real-time fluorescence and deformability cytometry (RT-FDC) in 63 SSc patients, 59 rheumatoid arthritis (RA) patients, 28 antineutrophil cytoplasmic antibody–associated vasculitis (AAV) patients, and 22 age- and sex-matched healthy donors. RESULTS: We identified a specific signature of biophysical properties of circulating immune cells in SSc patients that was mainly driven by monocytes. Since it is absent in RA and AAV, this signature reflects an SSc-specific monocyte activation rather than general inflammation. The biophysical properties of monocytes indicate current disease activity, the extent of skin or lung fibrosis, and the severity of manifestations of microvascular damage, as well as the risk of disease progression in SSc patients. CONCLUSION: Changes in the biophysical properties of circulating immune cells reflect their pathologic activation in SSc patients and are associated with clinical outcomes. As a high-throughput approach that requires minimal preparations, RT-FDC–based biophysical phenotyping of monocytes can serve as a tool for the evaluation and risk stratification of patients with SSc.
Dynamics of cell rounding during detachment
Agata Nyga, Katarzyna Plak, Martin Kräter, Marta Urbanska, Kyoohyun Kim, Jochen Guck, Buzz Baum
Animal cells undergo repeated shape changes, for example by rounding up and respreading as they divide. Cell rounding can be also observed in interphase cells, for example when cancer cells switch from a mesenchymal to an ameboid mode of cell migration. Nevertheless, it remains unclear how interphase cells round up. In this article, we demonstrate that a partial loss of substrate adhesion triggers actomyosin-dependent cortical remodeling and ERM activation, which facilitates further adhesion loss causing cells to round. Although the path of rounding in this case superficially resembles mitotic rounding in involving ERM phosphorylation, retraction fiber formation, and cortical remodeling downstream of ROCK, it does not require Ect2. This work provides insights into the way partial loss of adhesion actives cortical remodeling to drive cell detachment from the substrate. This is important to consider when studying the mechanics of cells in suspension, for example using methods like real-time deformability cytometry (RT-DC).
Confocal Interferometric Scattering Microscopy Reveals 3D Nanoscopic Structure and Dynamics in Live Cells
Michelle Küppers, David Albrecht, Anna D. Kashkanova, Jennifer Lühr, Vahid Sandoghdar
Nature Communications
14
1962 (2023)
(2023)
|
Journal
|
PDF
Bright-field light microscopy and related techniques continue to play a key role in life sciences because they provide a facile and label-free insight into biological specimen. However, lack of three-dimensional imaging and low sensitivity to nanoscopic features hamper their application in high-end quantitative studies. Here, we remedy these shortcomings by employing confocal interferometric scattering (iSCAT) microscopy. We demonstrate the performance of this label-free technique in a selection of case studies in live cells and benchmark our findings against simultaneously acquired fluorescence images. We reveal the nanometric topography of the nuclear envelope, quantify the dynamics of the endoplasmic reticulum, detect single microtubules, and map nanoscopic diffusion of clathrin-coated pits undergoing endocytosis. Furthermore, we introduce the combination of confocal and wide-field iSCAT modalities for simultaneous imaging of cellular structures and high-speed tracking of nanoscopic entities such as single SARS-CoV2 virions. Confocal iSCAT can be readily implemented as an additional contrast mechanism in existing laser scanning microscopes.
Rapid single-cell physical phenotyping of mechanically dissociated tissue biopsies
Despina Soteriou, Markéta Kubánková, Christine Schweitzer, Rocío López-Posadas, Rahmita Pradhan, Oana-Maria Thoma, Andrea-Hermina Györfi, Alexandru-Emil Matei, Maximilian Waldner, et al.
Nature Biomedical Engineering
7
1392-1403
(2023)
|
Journal
|
PDF
During surgery, rapid and accurate histopathological diagnosis is essential for clinical decision making. Yet the prevalent method of intra-operative consultation pathology is intensive in time, labour and costs, and requires the expertise of trained pathologists. Here we show that biopsy samples can be analysed within 30 min by sequentially assessing the physical phenotypes of singularized suspended cells dissociated from the tissues. The diagnostic method combines the enzyme-free mechanical dissociation of tissues, real-time deformability cytometry at rates of 100–1,000 cells s−1 and data analysis by unsupervised dimensionality reduction and logistic regression. Physical phenotype parameters extracted from brightfield images of single cells distinguished cell subpopulations in various tissues, enhancing or even substituting measurements of molecular markers. We used the method to quantify the degree of colon inflammation and to accurately discriminate healthy and tumorous tissue in biopsy samples of mouse and human colons. This fast and label-free approach may aid the intra-operative detection of pathological changes in solid biopsies.
Impact of crowding on the diversity of expanding populations
Carl F. Schreck, Diana Fusco, Yuya Karita, Stephen Martis, Jona Kayser, Marie-Cécilia Duvernoy, Oskar Hallatschek
Proceedings of the National Academy of Sciences of the United States of America
120(11)
e2208361120
(2023)
|
Journal
|
PDF
Crowding effects critically impact the self-organization of densely packed cellular assemblies, such as biofilms, solid tumors, and developing tissues. When cells grow and divide, they push each other apart, remodeling the structure and extent of the population’s range. Recent work has shown that crowding has a strong impact on the strength of natural selection. However, the impact of crowding on neutral processes, which controls the fate of new variants as long as they are rare, remains unclear. Here, we quantify the genetic diversity of expanding microbial colonies and uncover signatures of crowding in the site frequency spectrum. By combining Luria–Delbrück fluctuation tests, lineage tracing in a novel microfluidic incubator, cell-based simulations, and theoretical modeling, we find that the majority of mutations arise behind the expanding frontier, giving rise to clones that are mechanically “pushed out” of the growing region by the proliferating cells in front. These excluded-volume interactions result in a clone-size distribution that solely depends on where the mutation first arose relative to the front and is characterized by a simple power law for low-frequency clones. Our model predicts that the distribution depends on a single parameter—the characteristic growth layer thickness—and hence allows estimation of the mutation rate in a variety of crowded cellular populations. Combined with previous studies on high-frequency mutations, our finding provides a unified picture of the genetic diversity in expanding populations over the whole frequency range and suggests a practical method to assess growth dynamics by sequencing populations across spatial scales.
Self-supervised machine learning pushes the sensitivity limit in label-free detection of single proteins below 10 kDa
Mahyar Dahmardeh, Houman Mirzaalian Dastjerdi, Hisham Mazal, Harald Köstler, Vahid Sandoghdar
Interferometric scattering (iSCAT) microscopy is a label-free optical method capable of detecting single proteins, localizing their binding positions with nanometer precision, and measuring their mass. In the ideal case, iSCAT is limited by shot noise such that collection of more photons should extend its detection sensitivity to biomolecules of arbitrarily low mass. However, a number of technical noise sources combined with speckle-like background fluctuations have restricted the detection limit in iSCAT. Here, we show that an unsupervised machine learning isolation forest algorithm for anomaly detection pushes the mass sensitivity limit by a factor of 4 to below 10 kDa. We implement this scheme both with a user-defined feature matrix and a self-supervised FastDVDNet and validate our results with correlative fluorescence images recorded in total internal reflection mode. Our work opens the door to optical investigations of small traces of biomolecules and disease markers such as α-synuclein, chemokines and cytokines.<br><br>
A new hyperelastic lookup table for RT-DC
Lukas Daniel Wittwer, Felix Reichel, Paul Mueller, Jochen Guck, Sebastian Aland
Soft Matter
19(11)
2064-2073
(2023)
|
Journal
|
PDF
Real-time deformability cytometry (RT-DC) is an established method that quantifies features like size, shape, and stiffness for whole cell populations on a single-cell level in real-time. A lookup table (LUT) disentangles the experimentally derived steady-state cell deformation and the projected area to extract the cell stiffness in the form of the Young's modulus. So far, two lookup tables exist but are limited to simple linear material models and cylindrical channel geometries. Here, we present two new lookup tables for RT-DC based on a neo-Hookean hyperelastic material numerically derived by simulations based on the finite element method in square and cylindrical channel geometries. At the same time, we quantify the influence of the shear-thinning behavior of the surrounding medium on the stationary deformation of cells in RT-DC and discuss the applicability and impact of the proposed LUTs regarding past and future RT-DC data analysis. Additionally, we provide insights about the cell strain and stresses, as well as the influence resulting from the rotational symmetric assumption on the cell deformation and volume estimation. The new lookup tables and the numerical cell shapes are made freely available.
Shear rheology of methyl cellulose based solutions for cell mechanical measurements at high shear rates
Beyza Büyükurganci, Santanu Kumar Basu, Markus Neuner, Jochen Guck, Andreas Wierschem, Felix Reichel
Methyl cellulose (MC) is a widely used material in various microfluidic applications in biology. Due to its biocompatibility, it has become a popular crowding agent for microfluidic cell deformability measurements, which usually operate at high shear rates (>10 000 s−1). However, a full rheological characterization of methyl cellulose solutions under these conditions has not yet been reported. With this study, we provide a full shear-rheological description for solutions of up to 1% MC dissolved in phosphate-buffered saline (PBS) that are commonly used in real-time deformability cytometry (RT-DC). We characterized three different MC-PBS solutions used for cell mechanical measurements in RT-DC with three different shear rheometer setups to cover a range of shear rates from 0.1–150 000 s−1. We report viscosities and normal stress differences in this regime. Viscosity functions can be well described using a Carreau–Yasuda model. Furthermore, we present the temperature dependency of shear viscosity and first normal stress difference of these solutions. Our results show that methyl cellulose solutions behave like power-law liquids in viscosity and exhibit first normal stress difference at shear rates between 5000–150 000 s−1. We construct a general viscosity equation for each MC solution at a certain shear rate and temperature. Furthermore, we investigated how MC concentration influences the rheology of the solutions and found the entanglement concentration at around 0.64 w/w%. Our results help to better understand the viscoelastic behavior of MC solutions, which can now be considered when modelling stresses in microfluidic channels.
Embracing the diversity of model systems to deconstruct the basis of regeneration and tissue repair
The eighth EMBO conference in the series ‘The Molecular and Cellular Basis of Regeneration and Tissue Repair’ took place in Barcelona (Spain) in September 2022. A total of 173 researchers from across the globe shared their latest advances in deciphering the molecular and cellular basis of wound healing, tissue repair and regeneration, as well as their implications for future clinical applications. The conference showcased an ever-expanding diversity of model organisms used to identify mechanisms that promote regeneration. Over 25 species were discussed, ranging from invertebrates to humans. Here, we provide an overview of the exciting topics presented at the conference, highlighting novel discoveries in regeneration and perspectives for regenerative medicine.
Image-based cell sorting using focused travelling surface acoustic waves
Sorting cells is an essential primary step in many biological and clinical applications such as high-throughput drug screening, cancer research and cell transplantation. Cell sorting based on their mechanical properties has long been considered as a promising label-free biomarker that could revolutionize the isolation of cells from heterogeneous populations. Recent advances in microfluidic image-based cell analysis combined with subsequent label-free sorting by on-chip actuators demonstrated the possibility of sorting cells based on their physical properties. However, the high purity of sorting is achieved at the expense of a sorting rate that lags behind the analysis throughput. Furthermore, stable and reliable system operation is an important feature in enabling the sorting of small cell fractions from a concentrated heterogeneous population. Here, we present a label-free cell sorting method, based on the use of focused travelling surface acoustic wave (FTSAW) in combination with real-time deformability cytometry (RT-DC). We demonstrate the flexibility and applicability of the method by sorting distinct blood cell types, cell lines and particles based on different physical parameters. Finally, we present a new strategy to sort cells based on their mechanical properties. Our system enables the sorting of up to 400 particles per s. Sorting is therefore possible at high cell concentrations (up to 36 million per ml) while retaining high purity (>92%) for cells with diverse sizes and mechanical properties moving in a highly viscous buffer. Sorting of small cell fraction from a heterogeneous population prepared by processing of small sample volume (10 μl) is also possible and here demonstrated by the 667-fold enrichment of white blood cells (WBCs) from raw diluted whole blood in a continuous 10-hour sorting experiment. The real-time analysis of multiple parameters together with the high sensitivity and high-throughput of our method thus enables new biological and therapeutic applications in the future.
Epithelial RAC1-dependent cytoskeleton dynamics controls cell mechanics, cell shedding and barrier integrity in intestinal inflammation
Luz del Carmen Martínez-Sánchez, Phuong Anh Ngo, Rashmita Pradhan, Lukas-Sebastian Becker, David Boehringer, Despina Soteriou, Markéta Kubánková, Christine Schweitzer, Tatyana Koch, et al.
OBJECTIVE: Increased apoptotic shedding has been linked to intestinal barrier dysfunction and development of inflammatory bowel diseases (IBD). In contrast, physiological cell shedding allows the renewal of the epithelial monolayer without compromising the barrier function. Here, we investigated the role of live cell extrusion in epithelial barrier alterations in IBD. DESIGN: Taking advantage of conditional GGTase and RAC1 knockout mice in intestinal epithelial cells (Pggt1biΔIEC and Rac1iΔIEC mice), intravital microscopy, immunostaining, mechanobiology, organoid techniques and RNA sequencing, we analysed cell shedding alterations within the intestinal epithelium. Moreover, we examined human gut tissue and intestinal organoids from patients with IBD for cell shedding alterations and RAC1 function. RESULTS: Epithelial Pggt1b deletion led to cytoskeleton rearrangement and tight junction redistribution, causing cell overcrowding due to arresting of cell shedding that finally resulted in epithelial leakage and spontaneous mucosal inflammation in the small and to a lesser extent in the large intestine. Both in vivo and in vitro studies (knockout mice, organoids) identified RAC1 as a GGTase target critically involved in prenylation-dependent cytoskeleton dynamics, cell mechanics and epithelial cell shedding. Moreover, inflamed areas of gut tissue from patients with IBD exhibited funnel-like structures, signs of arrested cell shedding and impaired RAC1 function. RAC1 inhibition in human intestinal organoids caused actin alterations compatible with arresting of cell shedding. CONCLUSION: Impaired epithelial RAC1 function causes cell overcrowding and epithelial leakage thus inducing chronic intestinal inflammation. Epithelial RAC1 emerges as key regulator of cytoskeletal dynamics, cell mechanics and intestinal cell shedding. Modulation of RAC1 might be exploited for restoration of epithelial integrity in the gut of patients with IBD.
Publications
Cooperation partners
Graduate Program
Data Collection
This website uses cookies to ensure you get the best experience on our website.