Kinetics of CrPV and HCV IRES-mediated eukaryotic translation using single-molecule fluorescence microscopy
Olivier Bugaud, Nathalie Barbier, Helene Chommy, Nicolas Fiszman, Antoine Le Gall, David Dulin, Matthieu Saguy, Nathalie Westbrook, Karen Perronet, et al.
Protein synthesis is a complex multistep process involving many factors that need to interact in a coordinated manner to properly translate the messenger RNA. As translating ribosomes cannot be synchronized over many elongation cycles, single-molecule studies have been introduced to bring a deeper understanding of prokaryotic translation dynamics. Extending this approach to eukaryotic translation is very appealing, but initiation and specific labeling of the ribosomes are much more complicated. Here, we use a noncanonical translation initiation based on internal ribosome entry sites (IRES), and we monitor the passage of individual, unmodified mammalian ribosomes at specific fluorescent milestones along mRNA. We explore initiation by two types of IRES, the intergenic IRES of cricket paralysis virus (CrPV) and the hepatitis C (HCV) IRES, and show that they both strongly limit the rate of the first elongation steps compared to the following ones, suggesting that those first elongation cycles do not correspond to a canonical elongation. This new system opens the possibility of studying both IRES-mediated initiation and elongation kinetics of eukaryotic translation and will undoubtedly be a valuable tool to investigate the role of translation machinery modifications in human diseases.
Signatures of Nucleotide Analog Incorporation by an RNA-Dependent RNA
Polymerase Revealed Using High-Throughput Magnetic Tweezers
David Dulin, Jamie J. Arnold, Theo van Laar, Hyung-Suk Oh, Cheri Lee, Angela L. Perkins, Daniel A. Harki, Martin Depken, Craig E. Cameron, et al.
RNA viruses pose a threat to public health that is exacerbated by the dearth of antiviral therapeutics. The RNA-dependent RNA polymerase (RdRp) holds promise as a broad-spectrum, therapeutic target because of the conserved nature of the nucleotide-substrate-binding and catalytic sites. Conventional, quantitative, kinetic analysis of antiviral ribonucleotides monitors one or a few incorporation events. Here, we use a high-throughput magnetic tweezers platformto monitor the elongation dynamics of a prototypicalRdRpover thousands of nucleotide-addition cycles in the absence and presence of a suite of nucleotide analog inhibitors. We observe multiple RdRpRNA elongation complexes; only a subset of which are competent for analog utilization. Incorporation of a pyrazine-carboxamide nucleotide analog, T-1106, leads to RdRp backtracking. This analysis reveals a mechanism of action for this antiviral ribonucleotide that is corroborated by cellular studies. We propose that induced backtracking represents a distinct mechanistic class of antiviral ribonucleotides.
Probing the salt dependence of the torsional stiffness of DNA by multiplexed magnetic torque tweezers
Franziska Kriegel, Niklas Ermann, Ruaridh Forbes, David Dulin, Nynke H. Dekker, Jan Lipfert
Nucleic Acids Research
45(10)
5920-5929
(2017)
|
Journal
The mechanical properties of DNA fundamentally constrain and enable the storage and transmission of genetic information and its use in DNA nanotechnology. Many properties of DNA depend on the ionic environment due to its highly charged backbone. In particular, both theoretical analyses and direct single-molecule experiments have shown its bending stiffness to depend on salt concentration. In contrast, the salt-dependence of the twist stiffness of DNA is much less explored. Here, we employ optimized multiplexed magnetic torque tweezers to study the torsional stiffness of DNA under varying salt conditions as a function of stretching force. At low forces (< 3 pN), the effective torsional stiffness is similar to 10% smaller for high salt conditions (500 mM NaCl or 10 mM MgCl2) compared to lower salt concentrations (20 mM NaCl and 100 mM NaCl). These differences, however, can be accounted for by taking into account the known salt dependence of the bending stiffness. In addition, the measured high-force (6.5 pN) torsional stiffness values of C = 103 +/- 4 nm are identical, within experimental errors, for all tested salt concentration, suggesting that the intrinsic torsional stiffness of DNA does not depend on salt.
Publications
Cooperation partners
Graduate Program
Data Collection
This website uses cookies to ensure you get the best experience on our website.