Optical characterization of molecular interaction strength in protein condensates
Timon Beck, Lize-Mari van der Linden, Wade M. Borcherds, Kyoohyun Kim, Raimund Schlüßler, Paul Müller, Titus M. Franzmann, Conrad Möckel, Ruchi Goswami, et al.
Molecular Biology of the Cell
35(12)
(2024)
|
Journal
|
PDF
Biomolecular condensates have been identified as a ubiquitous means of intracellular organization, exhibiting very diverse material properties. However, techniques to characterize these material properties and their underlying molecular interactions are scarce. Here, we introduce two optical techniques—Brillouin microscopy and quantitative phase imaging (QPI)—to address this scarcity. We establish Brillouin shift and linewidth as measures for average molecular interaction and dissipation strength, respectively, and we used QPI to obtain the protein concentration within the condensates. We monitored the response of condensates formed by fused in sarcoma (FUS) and by the low-complexity domain of hnRNPA1 (A1-LCD) to altering temperature and ion concentration. Conditions favoring phase separation increased Brillouin shift, linewidth, and protein concentration. In comparison to solidification by chemical cross-linking, the ion-dependent aging of FUS condensates had a small effect on the molecular interaction strength inside. Finally, we investigated how sequence variations of A1-LCD, that change the driving force for phase separation, alter the physical properties of the respective condensates. Our results provide a new experimental perspective on the material properties of protein condensates. Robust and quantitative experimental approaches such as the presented ones will be crucial for understanding how the physical properties of biological condensates determine their function and dysfunction.
Thermally Assisted Microfluidics to Produce Chemically Equivalent Microgels with Tunable Network Morphologies
Dirk Rommel, Bernhard Häßel, Philip Pietryszek, Matthias Mork, Oliver Jung, Meike Emondts, Nikita Norkin, Iris Christine Doolaar, Yonka Kittel, et al.
Angewandte Chemie, International Edition in English
(2024)
|
Journal
|
PDF
Although micron-sized microgels have become important building blocks in regenerative materials, offering decisive interactions with living matter, their chemical composition mostly significantly varies when their network morphology is tuned. Since cell behavior is simultaneously affected by the physical, chemical, and structural properties of the gel network, microgels with variable morphology but chemical equivalence are of interest. This work describes a new method to produce thermoresponsive microgels with defined mechanical properties, surface morphologies, and volume phase transition temperatures. A wide variety of microgels is synthesized by crosslinking monomers or star polymers at different temperatures using thermally assisted microfluidics. The diversification of microgels with different network structures and morphologies but of chemical equivalence offers a new platform of microgel building blocks with the ability to undergo phase transition at physiological temperatures. The method holds high potential to create soft and dynamic materials while maintaining the chemical composition for a wide variety of applications in biomedicine.
The Hotomography
Geon Kim, Herve Hugonnet, Kyoohyun Kim, Chungha Lee, Jae-Hyuk Lee, Seongsoo Lee, Sung Sik Lee, Gabor Csucs, Jeongmin Ha, et al.
Holotomography (HT) represents a 3D, label-free optical imaging methodology that leverages refractive index as an inherent quantitative contrast for imaging. This technique has recently seen notable advancements, creating novel opportunities for the comprehensive visualization and analysis of living cells and their subcellular organelles. It has manifested wide-ranging applications spanning cell biology, biophysics, microbiology and biotechnology, substantiating its vast potential. In this Primer, we elucidate the foundational physical principles underpinning HT, detailing its experimental implementations and providing case studies of representative research employing this methodology. We also venture into interdisciplinary territories, exploring how HT harmonizes with emergent technologies, such as regenerative medicine, 3D biology and organoid-based drug discovery and screening. Looking ahead, we engage in a prospective analysis of potential future trajectories for HT, discussing innovation-focused initiatives that may further elevate this field. We also propose possible future applications of HT, identifying opportunities for its integration into diverse realms of scientific research and technological development.
Beyond comparison: Brillouin microscopy and AFM-based indentation reveal divergent insights into the mechanical profile of the murine retina
Marcus Gutmann, Jana Bachir Salvador, Paul Müller, Kyoohyun Kim, Martin Schicht, Serhii Aif, Friedrich Paulsen, Lorenz Meinel, Jochen Guck, et al.
Journal of Physics: Photonics
6
035020
(2024)
|
Journal
|
PDF
Mechanical tissue properties increasingly serve as pivotal phenotypic characteristics that are subject to change during development or pathological progression. The quantification of such material properties often relies on physical contact between a load-applying probe and an exposed sample surface. For most tissues, meeting these requirements entails an invasive preparation, which poses the risk of yielding mechanical properties that do not portray the physiological state of a tissue within a functioning organism. Brillouin microscopy has emerged as a non-invasive, optical technique that enables the assessment of mechanical cell and tissue properties with high spatio-temporal resolution. In optically transparent specimens, it does not require animal sacrifice, tissue dissection or sectioning. However, the extent to which results obtained from Brillouin microscopy allow to infer conclusions about potential results obtained with a contact-based technique, and vice versa, is unclear. Sources for discrepancies include the varying characteristic temporal and spatial scales, the directionality of measurement, environmental factors, and mechanical moduli probed. In this work, we addressed those aspects by quantifying the mechanical properties of acutely dissected murine retinae using Brillouin microscopy and atomic force microscopy (AFM)-based indentation measurements. Our results show a distinct mechanical profile of the retinal layers with respect to the Brillouin frequency shift, the Brillouin linewidth and the apparent Young's modulus. Contrary to previous reports, our findings do not support a simple correlative relationship between Brillouin frequency shift and apparent Young's modulus. Additionally, the divergent sensitivities of Brillouin microscopy and AFM-indentation measurements to structural features, as visualized by transmission electron microscopy, to cross-linking or changes post mortem underscore the dangers of assuming interchangeability between the two methods. In conclusion, our study advocates for viewing Brillouin microscopy and AFM-based indentation measurements as complementary tools, discouraging direct comparisons a priori and suggesting their combined use for a more comprehensive understanding of tissue mechanical properties.
Estimation of the mass density of biological matter from refractive index measurements
Conrad Möckel, Timon Beck, Sara Kaliman, Shada Abuhattum Hofemeier, Kyoohyun Kim, Julia Kolb, Daniel Wehner, Vasily Zaburdaev, Jochen Guck
Biophysical Reports
4(2)
100156
(2024)
|
Journal
|
PDF
The quantification of physical properties of biological matter gives rise to novel ways of understanding functional mechanisms. One of the basic biophysical properties is the mass density (MD). It affects the dynamics in sub-cellular compartments and plays a major role in defining the opto-acoustical properties of cells and tissues. As such, the MD can be connected to the refractive index (RI) via the well known Lorentz-Lorenz relation, which takes into account the polarizability of matter. However, computing the MD based on RI measurements poses a challenge, as it requires detailed knowledge of the biochemical composition of the sample. Here we propose a methodology on how to account for assumptions about the biochemical composition of the sample and respective RI measurements. To this aim, we employ the Biot mixing rule of RIs alongside the assumption of volume additivity to find an approximate relation of MD and RI. We use Monte-Carlo simulations and Gaussian propagation of uncertainty to obtain approximate analytical solutions for the respective uncertainties of MD and RI. We validate this approach by applying it to a set of well-characterized complex mixtures given by bovine milk and intralipid emulsion and employ it to estimate the MD of living zebrafish (Danio rerio) larvae trunk tissue. Our results illustrate the importance of implementing this methodology not only for MD estimations but for many other related biophysical problems, such as mechanical measurements using Brillouin microscopy and transient optical coherence elastography.
A buoyant nucleus is a universal characteristic of eukaryotic cells
The packing and confinement of macromolecules in the cytoplasm and nucleoplasm has profound implications for cellular biochemistry. How intracellular density distributions vary and affect cellular physiology remains largely unknown. Rather unexpectedly, we had discovered previously that the nucleus has a lower density than the cytoplasm in some cells and that this was robust against various perturbations. Here, we generalize this finding and show that living systems establish and maintain a constant density ratio between the nucleus and the cytoplasm across 10 model organisms: the nucleus is always 20% less dense than the cytoplasm. Using optical diffraction tomography and fluorescence microscopy, various biochemical and cell biological perturbations, together with theoretical modelling, we show that nuclear density is set by a pressure balance across the nuclear envelope in vitro (Xenopus egg extracts), in vivo (cell lines), and during early development (C. elegans embryos). The nuclear proteome exerts a colloid osmotic pressure, which, assisted by entropic chromatin pressure, draws water into the nucleus, while keeping osmotically inactive but heavy and large components excluded. This study reveals a previously unidentified homeostatic coupling of macromolecular densities that drives cellular organization with implications for pathophysiologies such as senescence and cancer.
before 2024
Small leucine-rich proteoglycans inhibit CNS regeneration by modifying the structural and mechanical properties of the lesion environment
Julia Kolb, Vasiliki Tsata, Nora John, Kyoohyun Kim, Conrad Möckel, Gonzalo Rosso, Veronika Kurbel, Asha Parmar, Gargi Sharma, et al.
Nature Communications
14
6814
(2023)
|
Journal
|
PDF
Extracellular matrix (ECM) deposition after central nervous system (CNS) injury leads to inhibitory scarring in humans and other mammals, whereas it facilitates axon regeneration in the zebrafish. However, the molecular basis of these different fates is not understood. Here, we identify small leucine-rich proteoglycans (SLRPs) as a contributing factor to regeneration failure in mammals. We demonstrate that the SLRPs chondroadherin, fibromodulin, lumican, and prolargin are enriched in rodent and human but not zebrafish CNS lesions. Targeting SLRPs to the zebrafish injury ECM inhibits axon regeneration and functional recovery. Mechanistically, we find that SLRPs confer mechano-structural properties to the lesion environment that are adverse to axon growth. Our study reveals SLRPs as inhibitory ECM factors that impair axon regeneration by modifying tissue mechanics and structure, and identifies their enrichment as a feature of human brain and spinal cord lesions. These findings imply that SLRPs may be targets for therapeutic strategies to promote CNS regeneration.
Varying the Stiffness and Diffusivity of Rod-Shaped Microgels Independently through Their Molecular Building Blocks
Yonca Kittel, Luis P. B. Guerzoni, Carolina Itzin, Dirk Rommel, Matthias Mork, Céline Bastard, Bernhard Häßel, Abdolrahman Omidinia-Anarkoli, Silvia P. Centeno, et al.
Angewandte Chemie, International Edition in English
62
e202309779
(2023)
|
Journal
|
PDF
Microgels are water-swollen, crosslinked polymers that are widely used as colloidal building blocks in scaffold materials for tissue engineering and regenerative medicine. Microgels can be controlled in their stiffness, degree of swelling, and mesh size depending on their polymer architecture, crosslink density, and fabrication method – all of which influence their function and interaction with the environment. Currently, there is a lack of understanding of how the polymer composition influences the internal structure of soft microgels and how this morphology affects specific biomedical applications. In this report, we systematically vary the architecture and molar mass of polyethylene glycol-acrylate (PEG-Ac) precursors, as well as their concentration and combination, to gain insight in the different parameters that affect the internal structure of rod-shaped microgels. We characterize the mechanical properties and diffusivity, as well as the conversion of acrylate groups during photopolymerization, in both bulk hydrogels and microgels produced from the PEG-Ac precursors. Furthermore, we investigate cell-microgel interaction, and we observe improved cell spreading on microgels with more accessible RGD peptide and with a stiffness in a range of 20 kPa to 50 kPa lead to better cell growth.
Label-free composition determination for biomolecular condensates with an arbitrarily large number of components
Patrick McCall, Kyoohyun Kim, Martine Ruer-Gruß, Jan Peychl, Jochen Guck, Anthony A. Hyman, Jan Brugués
Biomolecular condensates are membrane-less organelles made of multiple components, often including several distinct proteins and nucleic acids. However, current tools to measure condensate composition are limited and cannot capture this complexity quantitatively, as they either require fluorescent labels, which we show can perturb composition, or can distinguish only 1-2 components. Here, we describe a label-free method based on quantitative phase microscopy to measure the composition of condensates with an arbitrarily large number of components. We first validate the method empirically in binary mixtures, revealing sequence-encoded density variation and complex aging dynamics for condensates composed of full-length proteins. In simplified multi-component protein/RNA condensates, we uncover a regime of constant condensate density and a large range of protein:RNA stoichiometry when varying average composition. The unexpected decoupling of density and composition highlights the need to determine molecular stoichiometry in multi-component condensates. We foresee this approach enabling the study of compositional regulation of condensate properties and function.
Dynamics of cell rounding during detachment
Agata Nyga, Katarzyna Plak, Martin Kräter, Marta Urbanska, Kyoohyun Kim, Jochen Guck, Buzz Baum
Animal cells undergo repeated shape changes, for example by rounding up and respreading as they divide. Cell rounding can be also observed in interphase cells, for example when cancer cells switch from a mesenchymal to an ameboid mode of cell migration. Nevertheless, it remains unclear how interphase cells round up. In this article, we demonstrate that a partial loss of substrate adhesion triggers actomyosin-dependent cortical remodeling and ERM activation, which facilitates further adhesion loss causing cells to round. Although the path of rounding in this case superficially resembles mitotic rounding in involving ERM phosphorylation, retraction fiber formation, and cortical remodeling downstream of ROCK, it does not require Ect2. This work provides insights into the way partial loss of adhesion actives cortical remodeling to drive cell detachment from the substrate. This is important to consider when studying the mechanics of cells in suspension, for example using methods like real-time deformability cytometry (RT-DC).
Adipose cells and tissues soften with lipid accumulation while in diabetes adipose tissue stiffens
Shada Abuhattum, Petra Kotzbeck, Raimund Schlüßler, Alexandra Harger, Angela Ariza de Schellenberger, Kyoohyun Kim, Joan-Carles Escolano, Torsten Müller, Jürgen Braun, et al.
Scientific Reports
12
10325
(2022)
|
Journal
|
PDF
Adipose tissue expansion involves both differentiation of new precursors and size increase of mature adipocytes. While the two processes are well balanced in healthy tissues, obesity and diabetes type II are associated with abnormally enlarged adipocytes and excess lipid accumulation. Previous studies suggested a link between cell stiffness, volume and stem cell differentiation, although in the context of preadipocytes, there have been contradictory results regarding stiffness changes with differentiation. Thus, we set out to quantitatively monitor adipocyte shape and size changes with differentiation and lipid accumulation. We quantified by optical diffraction tomography that differentiating preadipocytes increased their volumes drastically. Atomic force microscopy (AFM)-indentation and -microrheology revealed that during the early phase of differentiation, human preadipocytes became more compliant and more fluid-like, concomitant with ROCK-mediated F-actin remodelling. Adipocytes that had accumulated large lipid droplets were more compliant, and further promoting lipid accumulation led to an even more compliant phenotype. In line with that, high fat diet-induced obesity was associated with more compliant adipose tissue compared to lean animals, both for drosophila fat bodies and murine gonadal adipose tissue. In contrast, adipose tissue of diabetic mice became significantly stiffer as shown not only by AFM but also magnetic resonance elastography. Altogether, we dissect relative contributions of the cytoskeleton and lipid droplets to cell and tissue mechanical changes across different functional states, such as differentiation, nutritional state and disease. Our work therefore sets the basis for future explorations on how tissue mechanical changes influence the behaviour of mechanosensitive tissue-resident cells in metabolic disorders.
Quantitative imaging of Caenorhabditis elegans dauer larvae during cryptobiotic transition
Kyoohyun Kim, Vamshidhar Gade, Teymuras V. Kurzchalia, Jochen Guck
Biophysical Journal
121(7)
1219-1229
(2022)
|
Journal
|
PDF
Upon starvation or overcrowding, the nematode Caenorhabditis elegans enters diapause by forming a dauer larva, which can then further survive harsh desiccation in an anhydrobiotic state. We have previously identified the genetic and biochemical pathways essential for survival—but without detailed knowledge of their material properties, the mechanistic understanding of this intriguing phenomenon remains incomplete. Here we employed optical diffraction tomography (ODT) to quantitatively assess the internal mass density distribution of living larvae in the reproductive and diapause stages. ODT revealed that the properties of the dauer larvae undergo a dramatic transition upon harsh desiccation. Moreover, mutants that are sensitive to desiccation displayed structural abnormalities in the anhydrobiotic stage that could not be observed by conventional microscopy. Our advance opens a door to quantitatively assessing the transitions in material properties and structure necessary to fully understand an organism on the verge of life and death.
Correlative all-optical quantification of mass density and mechanics of subcellular compartments with fluorescence specificity
Raimund Schlüßler, Kyoohyun Kim, Martin Nötzel, Anna Taubenberger, Shada Abuhattum, Timon Beck, Paul Müller, Shovamaye Maharana, Gheorghe Cojoc, et al.
Quantitative measurements of physical parameters become increasingly important for understanding biological processes. Brillouin microscopy (BM) has recently emerged as one technique providing the 3D distribution of viscoelastic properties inside biological samples − so far relying on the implicit assumption that refractive index (RI) and density can be neglected. Here, we present a novel method (FOB microscopy) combining BM with optical diffraction tomography and epifluorescence imaging for explicitly measuring the Brillouin shift, RI, and absolute density with specificity to fluorescently labeled structures. We show that neglecting the RI and density might lead to erroneous conclusions. Investigating the nucleoplasm of wild-type HeLa cells, we find that it has lower density but higher longitudinal modulus than the cytoplasm. Thus, the longitudinal modulus is not merely sensitive to the water content of the sample − a postulate vividly discussed in the field. We demonstrate the further utility of FOB on various biological systems including adipocytes and intracellular membraneless compartments. FOB microscopy can provide unexpected scientific discoveries and shed quantitative light on processes such as phase separation and transition inside living cells.
Passive coupling of membrane tension and cell volume during active response of cells to osmosis
Chloé Roffay, Guillaume Molinard, Kyoohyun Kim, Marta Urbanska, Virginia Andrade, Victoria Barbarasa, Paulina Nowak, Vincent Mercier, José García-Calvo, et al.
Proceedings of the National Academy of Sciences of the United States of America
118(47)
e2103228118
(2021)
|
Journal
|
PDF
During osmotic changes of their environment, cells actively regulate their volume and plasma membrane tension that can passively change through osmosis. How tension and volume are coupled during osmotic adaptation remains unknown, as their quantitative characterization is lacking. Here, we performed dynamic membrane tension and cell volume measurements during osmotic shocks. During the first few seconds following the shock, cell volume varied to equilibrate osmotic pressures inside and outside the cell, and membrane tension dynamically followed these changes. A theoretical model based on the passive, reversible unfolding of the membrane as it detaches from the actin cortex during volume increase quantitatively describes our data. After the initial response, tension and volume recovered from hypoosmotic shocks but not from hyperosmotic shocks. Using a fluorescent membrane tension probe (fluorescent lipid tension reporter [Flipper-TR]), we investigated the coupling between tension and volume during these asymmetric recoveries. Caveolae depletion and pharmacological inhibition of ion transporters and channels, mTORCs, and the cytoskeleton all affected tension and volume responses. Treatments targeting mTORC2 and specific downstream effectors caused identical changes to both tension and volume responses, their coupling remaining the same. This supports that the coupling of tension and volume responses to osmotic shocks is primarily regulated by mTORC2.
The Xenopus spindle is as dense as the surrounding cytoplasm
Abin Biswas, Kyoohyun Kim, Gheorghe Cojoc, Jochen Guck, Simone Reber
The mitotic spindle is a self-organizing molecular machine, where hundreds of different molecules continuously interact to maintain a dynamic steady state. While our understanding of key molecular players in spindle assembly is significant, it is still largely unknown how the spindle’s material properties emerge from molecular interactions. Here, we use correlative fluorescence imaging and label-free three-dimensional optical diffraction tomography (ODT) to measure the Xenopus spindle’s mass density distribution. While the spindle has been commonly referred to as a denser phase of the cytoplasm, we find that it has the same density as its surrounding, which makes it neutrally buoyant. Molecular perturbations suggest that spindle mass density can be modulated by tuning microtubule nucleation and dynamics. Together, ODT provides direct, unbiased, and quantitative information of the spindle’s emergent physical properties—essential to advance predictive frameworks of spindle assembly and function.
Combined fluorescence, optical diffraction tomography and Brillouin microscopy
Raimund Schlüßler, Kyoohyun Kim, Martin Nötzel, Anna Taubenberger, Shada Abuhattum Hofemeier, Timon Beck, Paul Müller, Shovamayee Maharana, Gheorghe Cojoc, et al.
Quantitative measurements of physical parameters become increasingly important for understanding biological processes. Brillouin microscopy (BM) has recently emerged as one technique providing the 3D distribution of viscoelastic properties inside biological samples — so far relying on the implicit assumption that refractive index (RI) and density can be neglected. Here, we present a novel method (FOB microscopy) combining BM with optical diffraction tomography and epi-fluorescence imaging for explicitly measuring the Brillouin shift, RI and absolute density with molecular specificity. We show that neglecting the RI and density might lead to erroneous conclusions. Investigating the cell nucleus, we find that it has lower density but higher longitudinal modulus. Thus, the longitudinal modulus is not merely sensitive to the water content of the sample — a postulate vividly discussed in the field. We demonstrate the further utility of FOB on various biological systems including adipocytes and intracellular membraneless compartments. FOB microscopy can provide unexpected scientific discoveries and shed quantitative light on processes such as phase separation and transition inside living cells.
Quantitative phase microscopy enables precise and efficient determination of biomolecular condensate composition
Patrick M. McCall, Kyoohyun Kim, Anatol W. Fritsch, J.M. Iglesias-Artola, L.M. Jawerth, Jie Wang, M. Ruer, J. Peychl, Andrey Poznyakovskiy, et al.
Many compartments in eukaryotic cells are protein-rich biomolecular condensates demixed from the cyto- or nucleoplasm. Although much has been learned in recent years about the integral roles condensates play in many cellular processes as well as the biophysical properties of reconstituted condensates, an understanding of their most basic feature, their composition, remains elusive. Here we combined quantitative phase microscopy (QPM) and the physics of sessile droplets to develop a precise method to measure the shape and composition of individual model condensates. This technique does not rely on fluorescent dyes or tags, which we show can significantly alter protein phase behavior, and requires 1000-fold less material than traditional label-free technologies. We further show that this QPM method measures the protein concentration in condensates to a 3-fold higher precision than the next best label-free approach, and that commonly employed strategies based on fluorescence intensity dramatically underestimate these concentrations by as much as 50-fold. Interestingly, we find that condensed-phase protein concentrations can span a broad range, with PGL3, TAF15(RBD) and FUS condensates falling between 80 and 500 mg/ml under typical in vitro conditions. This points to a natural diversity in condensate composition specified by protein sequence. We were also able to measure temperature-dependent phase equilibria with QPM, an essential step towards relating phase behavior to the underlying physics and chemistry. Finally, time-resolved QPM reveals that PGL3 condensates undergo a contraction-like process during aging which leads to doubling of the internal protein concentration coupled to condensate shrinkage. We anticipate that this new approach will enable understanding the physical properties of biomolecular condensates and their function.
Contact
Core Microscopy Facility Dr. Kyoohyun Kim
Max-Planck-Zentrum für Physik und Medizin Kussmaulallee 2 91054 Erlangen, Germany